Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava.

نویسندگان

  • María Marina
  • Francisco Vera Sirera
  • José L Rambla
  • María E Gonzalez
  • Miguel A Blázquez
  • Juan Carbonell
  • Fernando L Pieckenstain
  • Oscar A Ruiz
چکیده

This work investigated the roles of the tetraamine thermospermine (TSpm) by analysing its contribution to Arabidopsis basal defence against the biotrophic bacterium Pseudomonas viridiflava. The participation of polyamine oxidases (PAOs) in TSpm homeostasis and TSpm-mediated defence was also investigated. Exogenous supply of TSpm, as well as ectopic expression of the TSpm biosynthetic gene ACL5, increased Arabidopsis Col-0 resistance to P. viridiflava, while null acl5 mutants were less resistant than Col-0 plants. The above-mentioned increase in resistance was blocked by the PAO inhibitor SL-11061, thus demonstrating the participation of TSpm oxidation. Analysis of PAO genes expression in transgenic 35S::ACL5 and Col-0 plants supplied with TSpm suggests that PAO 1, 3, and 5 are the main PAOs involved in TSpm catabolism. In summary, TSpm exhibited the potential to perform defensive functions previously reported for its structural isomer Spm, and the relevance of these findings is discussed in the context of ACL5 expression and TSpm concentration in planta. Moreover, this work demonstrates that manipulation of TSpm metabolism modifies plant resistance to pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic diversity, recombination and cryptic clades in Pseudomonas viridiflava infecting natural populations of Arabidopsis thaliana.

Species-level genetic diversity and recombination in bacterial pathogens of wild plant populations have been nearly unexplored. Pseudomonas viridiflava is a common natural bacterial pathogen of Arabidopsis thaliana, for which pathogen defense genes and mechanisms are becoming increasing well known. The genetic variation contained within a worldwide sample of P. viridiflava collected from wild p...

متن کامل

Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis.

The contribution of arms race dynamics to plant-pathogen coevolution has been called into question by the presence of balanced polymorphisms in resistance genes of Arabidopsis thaliana, but less is known about the pathogen side of the interaction. Here we investigate structural polymorphism in pathogenicity islands (PAIs) in Pseudomonas viridiflava, a prevalent bacterial pathogen of A. thaliana...

متن کامل

Thermospermine is required for stem elongation in Arabidopsis thaliana.

Loss-of-function mutants of the ACAULIS5 (ACL5) gene in Arabidopsis thaliana have severe defects in stem elongation. ACL5 was previously reported as encoding a spermine synthase. A more recent study, however, showed that the bacterial expressed recombinant ACL5 protein catalyzes the conversion of spermidine to thermospermine, a structural isomer of spermine, rather than to spermine. In the pres...

متن کامل

Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana.

Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel different...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 64 5  شماره 

صفحات  -

تاریخ انتشار 2013